INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

B.MATH - Second Year, 2022-23, Introduction to Linear Models Mid-semesteral Examination, February 24, 2023
Marks are shown in square brackets.
Total Marks: 50
Time: $2 \frac{1}{2}$ Hours

1. Suppose (X, Y) is bivariate normal with $E(X)=0=E(Y), \operatorname{Var}(X)=$ $\sigma^{2}=\operatorname{Var}(Y)$ and a correlation coefficient of $\rho=0.4$ between X and Y. Define $U=(X-Y) / \sqrt{1-\rho}$ and $V=(X+Y) / \sqrt{1+\rho}$. Let P be a 2×2 symmetric, idempotent matrix. Find the probability distribution of $(U, V) P(U, V)^{\prime}$.
2. Suppose $Z \sim N(0,1)$ independent of U which takes values 1 and -1 with equal probability. Let $Y=U Z$.
(a) Find the probability distribution of Y.
(b) Find the covariance between Y and Z.
(c) Are Y and Z independent? Justify.

$$
[2+5+3]
$$

3. Consider the model $\mathbf{Y}=X \beta+\epsilon$, where $X_{n \times p}$ has rank p; also $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$. Let $\hat{\beta}$ be the least squares estimate of β. Consider any matrix $A_{q \times p}$ of rank q.
(a) Find the probability distribution of $(\hat{\beta}-\beta)^{\prime} A^{\prime}\left(A\left(X^{\prime} X\right)^{-1} A^{\prime}\right)^{-1} A(\hat{\beta}-\beta)$.
(b) Find $E\left[\hat{\beta}^{\prime} A^{\prime}\left(A\left(X^{\prime} X\right)^{-1} A^{\prime}\right)^{-1} A \hat{\beta}\right]$; how does it compare with $q \sigma^{2} ? \quad[7+8]$
4. Consider the following model:
$y_{1}=\alpha+\phi+\gamma+\epsilon_{1}$
$y_{2}=\alpha+\phi-\gamma+\epsilon_{2}$
$y_{3}=2 \alpha+2 \phi+\gamma+\epsilon_{3}$
$y_{4}=2 \alpha+2 \phi-\gamma+\epsilon_{4}$
where α, ϕ, γ are unknown regression parameters and ϵ_{i} are uncorrelated random variables having mean 0 and variance σ^{2}.
(a) Among the regression parameters which ones are estimable?
(b) What is the BLUE of the estimable regression parameters?
(c) What is the variance of the BLUEs above?
$[6+6+3]$
