

1. Suppose (X, Y) is bivariate normal with E(X) = 0 = E(Y), $Var(X) = \sigma^2 = Var(Y)$ and a correlation coefficient of $\rho = 0.4$ between X and Y. Define $U = (X - Y)/\sqrt{1 - \rho}$ and $V = (X + Y)/\sqrt{1 + \rho}$. Let P be a 2 × 2 symmetric, idempotent matrix. Find the probability distribution of (U, V) P(U, V)'. [10]

2. Suppose $Z \sim N(0, 1)$ independent of U which takes values 1 and -1 with equal probability. Let Y = UZ.

(a) Find the probability distribution of Y.

(b) Find the covariance between Y and Z.

(c) Are Y and Z independent? Justify. [2+5+3]

3. Consider the model $\mathbf{Y} = X\beta + \epsilon$, where $X_{n \times p}$ has rank p; also $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Let $\hat{\beta}$ be the least squares estimate of β . Consider any matrix $A_{q \times p}$ of rank q. (a) Find the probability distribution of $(\hat{\beta} - \beta)'A'(A(X'X)^{-1}A')^{-1}A(\hat{\beta} - \beta)$.

(b) Find $E\left[\hat{\beta}'A'(A(X'X)^{-1}A')^{-1}A\hat{\beta}\right]$; how does it compare with $q\sigma^2$? [7+8]

- 4. Consider the following model:
 - $y_1 = \alpha + \phi + \gamma + \epsilon_1$ $y_2 = \alpha + \phi - \gamma + \epsilon_2$
 - $y_3 = 2\alpha + 2\phi + \gamma + \epsilon_3$
 - $y_4 = 2\alpha + 2\phi \gamma + \epsilon_4$

where α, ϕ, γ are unknown regression parameters and ϵ_i are uncorrelated random variables having mean 0 and variance σ^2 .

- (a) Among the regression parameters which ones are estimable?
- (b) What is the BLUE of the estimable regression parameters?
- (c) What is the variance of the BLUEs above? [6+6+3]